

Taper bushing is a new type of component part used forjointing mechanical transmission. It changed traditional design,easy-on,easy-off,compact in construction and high standardization. The grip is tightened through its taper surface, excellent concentricity and nonclearance joint, its transmission efficiency can be raised.

The sizes of taper bushings are designed in a standard series. The bore, Keyway and thread are machined in accordance with ISO standard. It is interchangeable and the customers can make their own choice according to his purpose and usage. This mew type taper bhshing is widely used.

Grey cast iron is the common material for BTL taper bushings. If high tensional bushing is required, ductile iron, steel and forged steel can be used. Bushing made of stainless steel can be used together with sprockets. clutches, gears and other transmission parts which are also made of stainless steel.

When taper bushing is used with other transmission parts, in the starting and frequent inversion, it will cause damages to the bore and keyway, degrade precision due to pressing loads, if the case is a severe one, the whole transmission part will be ruined. This would be largely reduced if BTL ta-

per bushing is used. In case the bore and keyway are damaged, it will resume to service so long as remove the old bushing and assemble a new one. The lifetime of the transmission part can be raised, so the maintenance expenses are reduced.

BTL Taper bushing includes: taper bushing itself and tightening screws. (also including packaging)

The range for its usage can be enlarged if a weld-on taper hub is used.

If more detailed information about taper bushing is required, please contact the manufacturer.

Taper-lock Bushing (abbreviated as "Bushing") is a new type of elasticity components in shaft-hub connection, and is widely used in belts, timing belts, sprockets, gears, bevels, couplings, rollers, sheaves and agitators, impellers, fan rotors and other products which need to be shaft mounted. Its features are as follows:

1) extremely secure fit on the shaft, excellent concentricity;

2) without interference elasticity clip, easy on easy off, and low maintenance;

3) better shock resistance, long life-time, good reliability, using in the situation of frequent starting and inversion, heavy load, and other severe operating conditions;

4) It is widely used in many circumstances, and offers widely mounting between all kinds of trasmission components and different diameter shafts only by a few specifications; easy standardization, easy seriation and suitable for large scale of special productions, the cost then be reduced.

At present, traditional connection method by key is widely used in mechanical transmission. But its reliability is bad, for its concentricity is not very good, the installation is inconvenient, and keyway connection is easy to lose effectiveness under shock loads. Anyway, bushing has conquered all these defects completely, so it has been propagated soon after the bushing was invented in 1980's, it becomes very popular in USA and Europe, and Japanese people use more and more since 1990s. So, we can say, all over the world, bushing has taken place of traditional key connection in many places, and becomes new type of mechanical basic components. 1.Basic construction and working principal of bushing connection. Bushing mates with taper bore in transmission hub through 4 semi-taper angle surface, Its keyway is used to increase elasticity. The tightening press on the shaft is caused by tighten screws. The screws'structure and quantity depend on bushing's type and specification. When bushing and hub being tightened, bushing's bore shrinked and prssed on the shaft. Therefore, the torque will be transmitted through frictional force.Key connection will only be the subsidiary transmission parts then. To conquer bushing's self-locking featrue, screws used for installation have been set which can make the bushing removed from the shaft.

2. Bushing structure selection

Bushing can be divided into three types, which can be used according to the features.

2.1 General bushing

This kind of Bushing can achieve hub connection without increasing the transmission components' outside dimensions, its constructure is very compact. Located in the hub looks even and beautiful at two ends, Using cap screws as setting screw, there is a semi-screw on the hub to comply with it. Bushing can be connected with taper bored standard transmission parts directly or through taper weld-on hub. This type is the basic type, and is most widely used. 2.2 Flange type

This type's structure is simply, and installation is easier. Using hex screw as tightening screw, made it easier to adopt loosing-resistance construction and more reliable. But its dimension is little bigger than normal. so it's only suitable for use where there have low requirements on dimension or weight, and where the hub is shorter.

2.3 Adapters

Adapters for Taper-lock bushings are recommended for usage where the hub bore is straight. Especially to the rolling bearing, always meet with such circumstance, like closely mating with the shaft, too much insert, difficult installation, or easy damaging to the finish surface.

If the adapter is used to connect with bushing, all the questions will be solved then. But it should be told that, using adapters will increase radial dimension, so it will be more suitable where the shaft diameter is decided by bearing dimension, not by shaft itself's strength of rigidity. Select adapters' type according to related bushings'type.

3. Bushing's type and loading capacity. 3.1 General type 3.1.1 Dimension series: this type is divided into three series according to its load-bearing capacity and number of tapped holes: 1) light series: type 1008-3030 Have two un-tapped half-holes for tightening screws and one semi-tapped holes for unloading. 2) Medium series: type 3535-5050 Have three half-holes for tightening screws and two half-tapped holes for unloading. 3) Heavy series: type 6050-120100 Have four half-holes for tightening screws and two half-tapped holes for unloading. 3.1.2 Type and normenclatures For each type of bushing, there will be different standard shaft sizes for selection. Writen in four numbers, eq. 2517, the initial two are divided by ten indicating Max. bore of Bushing (in inches); the other two are divided by ten indicating length through bore (in inches). For example, the Max. bore of Bushing is 2.5 inches (2.5 x 25.4 mm), length through bore is 1.7 inches (1.7 x 25.4 mm).

Written in six numbers, eg. 120100, the initial three divided by ten indicating Max. bore of Bushing (in inches), the other three are divided by ten indicating length through bore (in inches). For example, 120 indicates that the Max bore of Bushing is 12 inches (12 x 25.4mm); 100 indicates that length through bore is 10 inches (10 x 25.4mm).

Written in five numbers, the initial three indicates Max, bore of bushing, the other two indicates length through bore, for example, 10085.

3.1.3 Rating load-bearing capacity

See torque capacity parameters for general type in the following table:

Bush.No	Torque Cap	acity Bush.N	o To	rque Capaci	ty
	1bf.in	N.m		Lbf.in	N.m
1008	1,200	136	3535	44,800	5,060
1108	1,300	147	4040	77,300	8,740
1210	3,600	407	4545	110,000	12,400
1215	5,000	407	4545	110,000	12,400
1310	3,850	435	5050	126,000	14,200
1315	5,650	455	5050	120,000	14,200
1610	4,300	486	6050	282,000	31,900
1615	4,500	400	7060	416,000	47,000
2012	7,150	808	8065	456,000	51,500
2517	11,600	1,310	10085	869,000	98,200
2525	11,000	1,310	10003	009,000	90,200
3020	24,000	2,710	120100	1,520,000	172,000
3030	27,000	2,710	120100	1,520,000	172,000

1bf.in=0.113N.m

It should be noted that bushing's load-bear-

ing capacity has some relations with screw tightening torque and shaft size. In this catalogue the related tightening torque has been given, The loadbearing capacity raised as the shaft size enlarged. Please consult with the factory if more detailed information meeded.

3.2 Flange type (QD bushing)

3.2.1 Dimension series: QD Bushings can be divided into two series according to whether they can be reversed mounting or not. 1) reversable mounting series: type JA-J

There are three screws and three bores on the flange.

2) un-reversable mounting series: type M-W.

Only with four tapped holes on the flange, without un-tapped holes.

3.2.2 Type and load -bearing capacity

According to the dimensions and load-bearing capacity, QD Bushings have thirteen specifications, see torque capacity and related screw tightening torque in the table below:

Bush.No				
Bush.ivo	Torque (Capacity	Screw Tighte	ening Torque
	1bf.in	N.m	Lbf.in	N.m
JA	1,000	113	54	6.1
SH	3,500	396	108	12.2
SDS	5,000	565	108	12.2
SK	7,000	791	180	20.3
SF	11,000	1,243	360	40.8
Е	20,000	2,260	720	81.4
F	30,000	3,390	900	102
J	45,000	5,090	1,620	183
М	85,000	9,600	2,700	305
N	150,000	17,000	3,600	408
Р	250,000	28,300	5,400	610
W	375,000	42,400	7,200	814
S	625,000	70,600	9,000	1,020
	SH SDS SK E F J M N P W	JA 1,000 SH 3,500 SDS 5,000 SK 7,000 SF 11,000 E 20,000 F 30,000 J 45,000 M 85,000 N 150,000 P 250,000 W 375,000	JA 1,000 113 SH 3,500 396 SDS 5,000 565 SK 7,000 791 SF 11,000 1,243 E 20,000 2,260 F 30,000 3,390 J 45,000 5,090 M 85,000 9,600 N 150,000 17,000 P 250,000 28,300 W 375,000 42,400	JA 1,000 113 54 SH 3,500 396 108 SDS 5,000 565 108 SK 7,000 791 180 SF 11,000 1,243 360 E 20,000 2,260 720 F 30,000 3,390 900 J 45,000 5,090 1,620 M 85,000 9,600 2,700 N 150,000 17,000 3,600 P 250,000 28,300 5,400 W 375,000 42,400 7,200

4. Selection

After selecting bushing type according to bushings' features under different using condition, the selection to the type mainly depends on the torque and loading force.

See loading coefficient K for bushing connection below:

К	Load type
1.0	light loading start, work even
1.5	light loading start, work uneven
2.0	medium loading start, work even or uneven
2.5	light or heavy loading start,medium shock
3.0	lighty or heavy loading start,heavy shock or rotating

working torque on shaft: T=63025N/n (lbf.in) Where,N-transmission torque (house); n-shaft revolutions perminute(RPM) calculation torque To=KT,K-loading coefficient When using To select Bushing type, it should comply with $T_H \leq T_{O}, T_H$ -Bushing torque capacity, can be got from the given table.

BUSH	SCREW	SCREV	V
NO	TIGHTENING TORQUES(Nm)	QUANTITY	SIZE
1008			1/4"
1108	5.6	2	BSW
1210			3/8"
1215	20	2	BSW
1310			3/8"
1315	20	2	BSW
1610			3/8"
1615	20	2	BSW
2012			7/16"
2012	31	2	BSW
2517			1/2"
2317	48	2	BSW
3020			5/8"
3030	90	2	BSW
3535			1/2"
2222	112	3	BSW
40.40			5/8"
4040	170	3	BSW
4545			3/4"
4545	192	3	BSW
EOEO			7/8"
5050	271	3	BSW

The BTL taper bushing are registered patant products. Any producton and sale should be authorised and permitted.

-Special Note

BTL bushing are made of GG25 cast iron. We can also offer other materials according to customers' requirements.

We can do surface coating according to the customers' requirements.*(such as painting, black phosphating,black oxidizing and so on)

BTL TAPER BUSHING INSTALLATION INSTRUCTIONS

TO ASSEMBLE

1.Clean and degrease the bore and taper surfaces of the bush and the tapered bore of the pulley. Insert the bush into the pulley hub and line up holes (half thread holes must line up with half unloading holes)

2.Lightly oil the grub screws (bush size 1008 to 3030)or the cap screws (bush size to 5050)and screw them in, not tighten yet.

3.Clean and degrease the shaft.Fit pulley with taper bush on shaft and locate in desired position.

4.When using a key it should firstly be fitted in the shaft Keyway.There should be a top clearance between the key and the keyway in the bore.

5.Using a hexagon socket wrench (DIN911) gradually tingten the grub cap screws in accordance with the torques as listed in the schedule of screw tightening torques.

6.When the drive has been operating under load for a short period(half to one hour)check and ensure that the screws remain at the appropriate tightening torque.

7.In order to eliminate the ingress of dirt, fill all empty holes with grease.

REMOVAL

1.Loose and remove all the screws and place them in holes of bushing.

2.Tighten the screws alternatively till the hub's grip on bushing is loosen. The inner bore of bushing can be slid on the shaft.

3.Remove the bushing from the shaft.

Each part is individualy boxed.

BTL bushings are inserted with high quality screws made in Japan.

3535 thru 5050 sizes

Dimensions for 1008 thru 3030 BTL Taper Bushings

BUSH NO	A	В	D	Set Screws	
1008	1.386	7/8	1 21/64	1/4x1/2	
1108	1.511	7/8	1 29/64	1/4x1/2	
1210	1 7/8	1	1 3/4	3/8x5/8	
1215	1 7/8	1 1/2	1 3/4	3/8x5/8	
1310	2	1	1 7/8	3/8x5/8	
1610	2 1/4	1	2 1/8	3/8x5/8	
1615	2 1/4	1 1/2	2 1/8	3/8x5/8	
2012	2 3/4	1 1/4	2 5/8	7/16x7/8	
2517	3 3/8	1 3/4	3 1/4	1/2x1	
2525	3 3/8	2 1/2	3 1/4	1/2x1	
3020	4 1/4	2	4	5/8X1 1/4	
3030	4 1/4	3	4	5/8x1 1/4	

Dimensions for 1008 thru 5050 BTL Taper Bushings

BUSH NO	А	В	D	Set Screws	G
3535	5	3 1/2	4.83	1/2x 1 1/2	40°
4040	5 3/4	4	5.54	5/8x1 3/4	40°
4545	6 3/8	4 1/2	6.13	3/4x2	40°
5050	7	5	6.72	7/8x2 1/4	37°

Two screws required Three screws required

BTL Taper bushing KEYWAY

LIN 6885 JIS B 1301-1976 UNI 6604-1969 GB 1095-1979

Duch	Para	Duckin -	Duch	Port	Ducking	Duch	Darra	Duck in c	Durah	Darr	Duckin -	Durah	Port	Duching			1979 Buching
Bush	Bore	Bushing	Bush	Bore	Bushing	Bush	Bore	Bushing	Bush	Bore	Bushing	Bush	Bore	Bushing	1	Bore	Bushing
No	10	Keyway 3x1.40	No	1.4	Keyway	No	20	Keyway	No	25	Keyway	No	35	Keyway	No	55	Keyway 16x4.30
	11			14 16	5x2.30		20	6x2.80		25	8x3.30		38	10x3.30		60	10x4.50
	12	4x1.80		18			24		-	30	073.20		40		-	65	18x4.40
	14			19			25			32		-	42	12x3.30		70	
	16	5x2.30		20	6x2.80		28	8x3.30		35	10x3.30		45		1	75	20x4.90
1008	18			22			30			38	10/10/10/0		48	14x3.80		80	
	19			24			32			40			50			85	22x5.40
	20	6x2.80		25	8x3.30		35	10x3.30		42	12x3.30		55	16x4.30	1	90	
	22			28	0/03.50		38			45		1	60		1	95	25x5.4
	24	8x2.00	1610	30			40		1	48	14x3.80		65	18x4.40		100	
\wedge	25	8x1.30		32			42	12x3.30		50			70	20.400	1	105	28x6.40
	10	3x1.40		35	10x3.30		45			55	16x4.30		75	20x4.90		110	
	11			38			48	14x3.80		60	18x4.40		80	2275 40			
	12	4x1.80		40	12x3.30		50			65	1084.40		85	22x5.40			
	14		\triangle	42	12x2.20		55	16x4.30		70	20x4.90		90	25x5.40			
	16	5x2.30				2517	60	18x4.40	3020	75	20/1.50	3535			4545		
	18																
1180	19	6 2 00															
	20	6x2.80															
	22																
	24	8x3.30		14	Ev2 20												
	25	0X3.30		16	5x2.30												
Δ	28	8x2.00		18													
	11	4x1.80		19	6x2.80												
	12	471.00		20	0/12.00												
	14	5x2.30		22		-											
	16	572.50		24													
	18			25	-8x3.30												
	19	6x2.80	1615	28 30													
1210	20		1015	32													
	22			35	10x3.30		20	6x2.80		25			40	12x3.30		60	18x4.40
	24			38	10/03.50		22			28	8x3.30		42		1	65	10/11/10
	25	8x3.30		40	12x3.30		24			30			45		1	70	20x4.90
	28		\triangle	42	12x2.20		25			32		-	48	14x3.80		75	20/ 1.90
	30	10,220					28	8x3.30		35	10x3.30		50			80	22x5.40
	32	10x3.30					30			38			55	16x4.30	1	85	
	11 12	4x1.80					32			40			60	18x4.40	1	90	25x5.40
	12						35	10x3.30		42	12x3.30		65			95	
	14	5x2.30		18			38			45		1	70		1	100	
	18			19	6 2 00		40	12x3.30		48	14x3.80		75	20x4.90		105	28x6.40
	19			20	6x2.80		42			50			80		1	110	
1215	20	6x2.80		22			45		1	55	16x4.30]	85	22x5.40		115	
1215	20			24			48	14x3.80		60	10,440		90	25x5.40		120	32x7.40
	24			25	8x3.30		50			65	18x4.40		95			125	
	25			28	0/10/10 0	2525	55	16x4.30	3030	70	20x4.90	4040	100	28x6.40	5050		
	28	8x3.30		30		2020	60	18x4.40	5050	75	2074.20	4040			3030		
	30			32													
	32	10x3.30		35	10x3.30												
	14		2012	38													
	16	5x2.30		40	12x3.30												
	18			42	12/23.20												
	19	Cu2 00		45													
	20	6x2.80		48	14x3.80												
1210	22			50													
1310	24																
	25	0.2.20															
	28	8x3.30															
	30																
			1	I		1	1					1	I		1	1	
	32	10x3.30															

BTL Taper bushing KEYWAY

B.S.46:Part:1958 KEYS AND KEYWAYS

	1/2		DEPTH	No		WIDTH	DEPTH	Bush No	Bore	Keywa width	DEPTH	Bush No	Bore	Keywa width	y depth	Bush No	Bore	Keywa width	DEPTH	Bush No	Bore	Keywa width	depth
		0.125			1/2	0.125	0.062		1/2	0.125	0.062		7/8				1 3/16		0.125		1 15/16	0.50	0.156
	9/16 5/8				9/16 5/8				5/8 11/16	0.187	0.093		15/16 1	0.25	0.125		1 1/4 1 3/8			+	2 3/16		
	11/16	0.187	0.093		11/16	0.187	0.093		3/4				1 1/8				1 7/16	0.375	0.125		2 3/8	0.625	0.218
1008	3/4				3/4				13/16				1 3/16	0.312	0.125		1 1/2				2 7/16		
	13/16	0.25	0.125		13/16				7/8	0.25	0.125		1 1/4				1 5/8				2 5/8		
	7/8	0.20	01120		7/8 15/16	0.25	0.125		15/16 1				1 5/16 1 3/8	0.375	0.125		1 11/16 1 3/4	0.437	0.156		2 3/4 2 7/8	0.75	0.25
\mathbb{X}	1	0.25	0.062		1				1 1/16				1 7/16	0.575	0.125		1 7/8			1	2 15/16		
	1/2	0.125	0.062	1610	1 1/16				1 1/8	0312	0.125		1 1/2				1 15/16	0.50	0.156		3		
	9/16				1 1/8	0.312	0.125		1 3/16	0.512	0.125		1 9/16				2			-	3 1/8		
	5/8 11/16	0.187	0.093		1 3/16 1 1/4				1 1/4 1 5/16				1 5/8 1 11/16	0.437	0.156		2 1/8 2 3/16				3 3/16 3 1/4		
	3/4				1 5/16				1 3/8	0.275	0.125		1 3/4				2 1/4			4545	3 3/8		
1108	13/16				1 3/8	0.375	0.125		1 7/16	0.375	0.125		1 13/16				2 5/16	0.625	0.218		3 7/16	0.875	0.312
	7/8	0.25	0.125		1 7/16			2517	1 1/2				1 7/8	0.50	0.156		2 3/8				3 1/2		
	15/16 1			\wedge	1 1/2				1 9/16			3020	1 15/16 2			3535	2 7/16 2 1/2				3 5/8 3 3/4		
\wedge	1 1/16			\square	1 9/16 1 5/8	0.437	0.125		1 5/8 1 11/16	0.437	0.156		2 1/16				2 5/8			-	3 3/4 3 7/8	1.0	0.375
\square	1 1/8	0.312	0.078		1/2	0.125	0.062		1 3/4				2 1/8				2 11/16				3 15/16		
	1/2	0.125	0.062		9/16				1 13/16				2 3/16				2 3/4	0.75	0.25		4		
	9/16				5/8	0.187	0.093		1 7/8	0.50	0.156		2 1/4	0.625	0.218		2 7/8	0175	0.25		4 1/8	4.95	0.427
	5/8 11/16	0.187	0.093		11/16 3/4				1 15/16 2				2 5/16 2 3/8				2 15/16 3				4 3/16 4 1/4	1.25	0.437
	3/4				13/16				2 1/16				2 7/16				3 1/8			18	4 3/8		
ŀ	13/16				7/8	0.25	0.125		2 1/8	0.625	0.218		2 1/2				3 3/16	0.875	0.312		4 7/16	1.25	0.25
1210	7/8	0.25	0.125		15/16				2 3/16	0.025	0.210		2 5/8	0.75	0.050		3 1/4			$ \downarrow \rangle$	4 1/2		
	15/16 1			1615	1 1/16			\wedge	2 1/4 2 5/16				2 11/16 2 3/4	0.75	0.250	\mathcal{A}	3 5/16 3 3/8			\square	4 3/4 2 7/16	0.625	0.218
ŀ	1-1/16			1015	1 1/8	0.212	0.125	\square	2 3/8	0.625	0.107	$ \Delta $	2 13/16			\square	3 7/16	0.875	0.25		2 15/16	0.75	0.25
	1-1/8	0.312	0 1 2 5		1 3/16	0.312	0.125	\mathcal{A}	2 7/16	0.625	0.187		2 7/8	0.75	0.218	\square	3 1/2				3 3/8	0.875	0.312
	1-3/16	0.012	025		1 1/4				2 1/2	0.107	0.002	$\left \right\rangle$	2 15/16				1 - 4 -				3 7/16		
$ \rightarrow $	1-1/4	0.125	0.062		1 5/16 1 3/8				3/4	0.187	0.093		3	0.25	0.125		1 7/16 1 1/2	0.375	0.125		3 5/8 3 3/4		
ŀ	9/16	0.125	0.002		1 7/16	0.375	0.125		1	0.25	0.125		1	0.23	0.125		1 5/8			5050	3 7/8	1.0	0.375
	5/8	0.187	0 093	^	1 1/2				1 1/8				1 1/8				1 11/16	0.437	0.156		3 15/16		
	11/16			\square	1 9/16	0.437	0.125		1 3/16	0.312	0.125		1 3/16	0.312	0.125		1 3/4			-	4		
ŀ	3/4				1 5/8 1/2	0.125	0.062		1 1/4 1 3/8				1 1/4 1 5/16				1 7/8 1 15/16	0.50	0.156		4 1/4 4 3/8	1.25	0.437
1215	7/8	0.25	0.125		9/16				1 7/16	0.375	0.125		1 3/8	0.375	0.125		2				4 7/16		
	15/16	0.25	0.125		5/8	0.187	0.093		1 1/2				1 7/16				2 1/8			1.	4 1/2		
-	1				11/16				1 5/8	0 427	0.150		1 1/2				2 3/16			$ \Delta $	4 7/8	1.25	0.212
	1 1/16 1 1/8				3/4				1 11/16 1 3/4	0.437	0.156		1 9/16 1 5/8	0.437	0.156		2 1/4 2 3/8	0.625	0.218		4 15/16 5	1.25	0.312
	1 3/16	0.312	0.125		7/8	0.25	0.125		1 13/16				1 11/16				2 7/16						
	1 1/4				15/16	0.25	0.125		1 7/8	0.50	0.156		1 3/4				2 1/2						
-		0.125	0.062		1				1 15/16				1 13/16	0.50	0.156		2 5/8						
	9/16 5/8				1 1/16 1 1/8			2525	2 1/8				1 7/8 1 15/16	0.30	0.156	4040	2 11/16 2 3/4						
	11/16	0.187	0.093		1 3/16	0.312	0.125		2 3/16	0.625	0.218	3030	2				2 7/8	0.75	0.25				
	3/4			2012	1 1/4			~	2 1/4				2 1/16				2 15/16						
	13/16				1 5/16			\square	2 5/16				2 1/8				3			-			
	7/8 15/16	0.25	0.125		1 3/8 1 7/16	0.375	0.125	\square	2 3/8 2 7/16	0.625	0.187		2 3/16 2 1/4				3 1/8 3 3/16						
	1				1 1/2			\triangle	2 1/2				2 5/16	0.625	0.218		3 1/4	0.075	0.212				
1310	1 1/16				1 9/16								2 3/8				3 3/8	0.075	0.312				
	1 1/8	0.312	0.125		1 5/8	0.437	0.156						2 7/16				3 7/16						
	1 3/16 1 1/4				1 11/16 1 3/4								2 1/2 2 5/8				3 1/2 3 5/8			-			
ŀ	1 5/16	0.275	0.125		1 13/16	0.50	0.155						2 11/16	0.75	0.250		3 11/16	1.0	0.375				
	1 3/8	0.375	U.125	\wedge	1 7/8	0.50	0.156						2 3/4			\triangle	3 3/4]			
				/ \	1 15/16		0.405						2 7/8			\triangle	3 7/8						
				$\overline{\mathbf{A}}$		0.50	0.125					$ / \rangle$	2.45.5	0.75	0 210		2	1.0	0.25				
				\square	2	0.50	0.125						2 15/16 3	0.75	0.218	\mathbb{A}	3 15/16 4	1.0	0.25				

Dimensions for 6050 thru 120100 BTL Taper Bushings

	Bush.No.	А	В	D	Socket Head Cap Screws	E	L	М
	6050	9 1/4	5	9	3-1 1/4x3 1/2	6 3/4	1 5/8	4 3/8
	7060	10 1/4	6	10	4-1 1/4x3 1/2	7 3/4	1 5/8	4 3/8
	8065	11 1/4	6 1/2	11	4-1 1/4x3 1/2	8 3/4	1 5/8	4 3/8
	10085	14 3/4	8 1/2	14 1/2	4-1 1/2x4 1/4	11 3/4	2	5 3/8
L	120100	17 1/4	10	17	6-1 1/2x4 1/4	14 1/4	2	5 3/8

Dimensions for TAPER Bushings Metric. Inches Bore

Bush.No	inche	s bore	metric bore	
DUSTI.NO	Min.	Max.	Min.	Max.
6050	4 7/16	6	80	150
7060	4 15/16	7	90	175
8065	5 7/16	8	110	200
10085	7	10	175	250
12100	8	12	200	300

Bore and keyway dimensions conform to ISO standard recommendation R773. for "free" fit Instruction is sheet packed into each bushing box.

BTL

This type of Taper BORE weld-on Hubs adopt Europe Standard.

Taper Bore Weld-on Hubs are made of steel,drilled,tapped and taper bored to recieve standard Taper Bushes. The extended flange provides a convenient means of welding hubs into fan rotors, steel pulleys, plate sprockets, impellers, agitators and many other devices, which must be firmly fastened entirely suitable for usage where severe operating conditions are met. Tightening the screws contracts the bore of the bush, thereby locking it to the shaft with the equivalent of a press fit. This type of construction eliminates mounting difficulties, it also prevents loosening and wearing happened to the hub during operation.

Hub Rel	Bush No	А	В	С	D	E	h
WH1210	1210	73	60	10	25	9	16
WH1215	1215	76	60	11	38	16	22
WH1610	1610	83	70	10	25	9	16
WH1615	1615	83	70	11	38	16	22
WH2012	2012	96	90	12	32	10	22
WH2517	2517	127	110	13	45	19	26
WH3020	3020	152	130	18	51	24	27
WH3030	3030	152	130	19	76	25	51
WH3525	3525	184	155	25	65	25	40
WH3535	3535	184	155	25	89	32	57
WH4040	4040	225	195	35	102	32	70
WH4545	4545	254	220	40	114	38	76
WH5050	5050	276	242	40	127	38	89

WH WELD-ON HUBS

BTL

Adapters for TAPER bushing are recom-mended for usage where it is more convenient to straight bore than to drill,tap and taper bore hubs to accommodate bushings.

The adapter is a taper-bored sleeve of grey cast iron which fits into the straight bore of a hub.The bushing simply fits inside the adapter which is tapped for the bushing screws,When tightening the locking screws,adapter is expanded against the hub bore pressing the bushing tightly upon the shaft.

Allerater	Durah					D		F	
Adapter No.	Bush No.	A	В	С	class 20 Gray Iron	Class30 Gray Iron	Steel	E Keyseat	Wt
40450	1015								0.7
1215B	1215	1 7/8	1 1/2	2 3/8	3 5/8	3 3/8	3 1/4	1/4x1/8	0.7
1615B	1615	2 1/4	1 1/2	2 3/4	4	3 3/4	3 1/2	3/8x1/8	0.9
2517B	2517	3 3/8	1 3/4	4 1/8	5 7/8 🛆	5 1/2	5	5/8x1/8	2.2
2525B	2525	3 3/8	2 1/2	4 1/8	5 1/2 🛆	5 1/4	5	5/8x1/8	3.2
3030B	3030	4 1/4	3	5 1/8	7 3/8 🛆	6 7/8	б 1/4	3/4x3/16	5.8
3535B	3535	5	3 1/2	б 1/4	9 1/8	8 3/8	7 7/8	7/8x3/16	11.3
4040B	4040	5 3/4	4	7 1/4	11 1/8	10 1/8	9 3/8	1x3/16	17.3
4545B	4545	6 3/8	4 1/2	7 7/8	12	11	10 1/4	1x3/16	21.9

TAPER ADAPTERS

Taper Bolt-on-Hub is one type of bolt-on-hubs that specially designed for bushes, its characteristics are simple structure,easy-on,easy-off,simultaneously usable on both sides and so on. it applies to vane wheels,fans and other parts which must be fixed closely with shatfs. Taper Bolt-on-Hub are made of high standard grey Cast Iron GG25. which have enough intensity. The surface is phosphated. attractive and antirust. They are seriesly standarized produced and highly interchangeable, so that the stock costs can be lowered.

TAPER BOLT - on - HUBS

specification	Bush No.	main dimensions								screw hole
		А	В	Ch9	D	E	F	G	Н	nxj
SM1200	1210	180	135	90	75	25	6.5	2.5	11.5	6xf7.5
SM1600	1615	200	150	110	85	38	7.5	2.5	12.5	6xf7.5
SM2000	2012	270	190	140	110	32	8.5	2.5	13.5	6xf9.5
SM2500	2517	340	240	170	125	45	9.5	2.5	14.5	8xf11.5
SM30-1	3020	430	300	220	160	51	13.5	2.5	18.5	8xf13.5
SM30-2	3020	485	340	250	160	51	13.5	2.5	18.5	8xf13.5
SM1210	1210	120	100	80	75	25	6.5	2.5	11.5	6xf7.5
SM1610	1610	130	110	90	85	25	7.5	2.5	12.5	6xf7.5
SM2012	2012	145	125	115	110	32	8.5	2.5	13.5	6xf7.5
SM2517	2517	185	155	130	125	45	9.5	2.5	14.5	8xf11.5
SM3020	3020	220	190	160	160	51	13.5	-	13.5	8xf13.5